Water Quality Criteria for Chloride

VT Department of Env. Conservation

Pre-Rulemaking Stakeholder Outreach for

Municipalities and other Stakeholders

Outline

- Proposed amendments to VT Water Quality Standards
- Why Chloride?
- What are the effects?
- What are the criteria
- How does DEC intend to conduct assessments?
- Next steps

Proposed Amendments

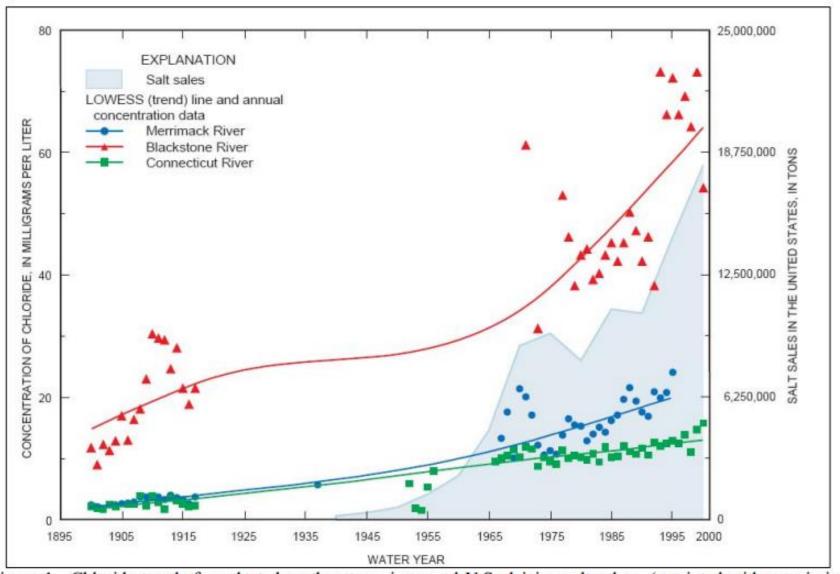
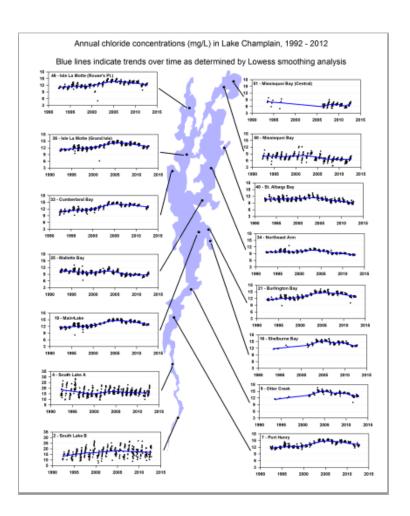
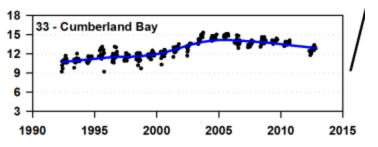
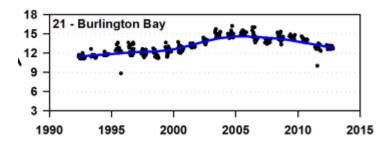
- Act 138 transferred rulemaking authority to ANR from Natural Resources Board for
 - WQS
 - Classification and designations
- Proposed Changes
 - E. coli
 - Nutrients (phosphorus)
 - "Appendix C" including Hg and Chloride
- Process to date

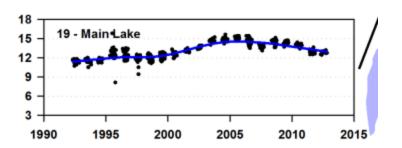
Why chloride?

- Cl⁻ is typically a chemically inert ion, found in surface and groundwaters subject to deicing practices.
- Cl- easily dissociates from deicing agents such as NaCL, CaCl, MgCl.
- Cl- migrates readily, but not completely, into groundwater.
- Other sources include WWTF effluents and some agricultural wastes.

Why Chloride?

- Salt usage and water concentrations are increasing nationally and regionally.
- Observations within monitoring networks have led to a growing awareness of the presence of Cl- in surface waters.
- DEC's interest in adopting Cl- criteria to protect surface waters stems from these observations, and locally-relevant measurements.


Figure 1. Chloride trends for selected northeastern rivers and U.S. deicing salt sales. (reprinted with permission from Robinson et al. 2003)

Locally...

Environmental Effects

- EPA proposed 304(a) criteria for Cl- in 1988
- Not previously adopted, DEC unaware of why.
- A paper by Shambaugh (2008) provides a good summary what is known about Cl- in the Champlain Basin.
- Effects include:
 - Terrestrial vegetation
 - Aquatic organisms

Impacts to aquatic biota

- Numerous species evaluated by EPA and Env. Canada for toxicity associated with Cl-
- Endpoints included LC50's and Growth Inhibition

Table 2. Predicted cumulative percentage of species affected by chronic exposure to chloride. Modified from Environment Canada (2001).

Cumulative percentage	Mean chloride	Lower confidence limit	Upper confidence limit
of	concentration (mg/L)	(mg/L)	(mg/L)
species affected			
5	212.6	135.9	289.5
10	237.9	162.3	313.6
25	328.7	260.2	397.2
50	563.2	504.8	621.7
75	963.7	882.3	1045.1
90	1341.1	1253.8	1428.4

Local science used to support this proposal

- VTDEC Urban Stream Assessment Report 2007
 - Examined urbanized streams in a range of biological attainment status for Cl- concentrations
- USGS VTrans Chittenden County Stream <u>Report</u>, 2009
 - Examined Chittenden County streams to document Cl- concentrations specifically associated with de-icing salts.

Proposed criteria

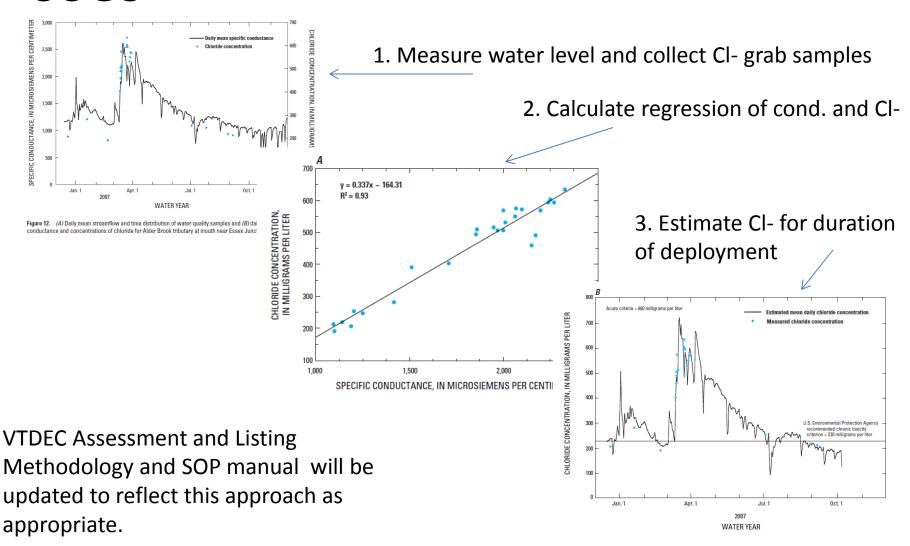
	Chronic	Acute	
Magnitude	230 mg/L	860 mg/L	
Frequency	< once per 3 year period		
Duration	Four day average	One hour average	

Assessment approach

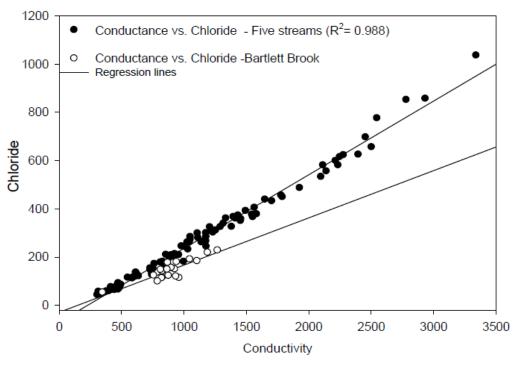
- Criteria are based on duration of exceedance.
- Grab samples not sufficient grounds for documentation of impairment

Assessment approach

 Tight relationships can be constructed between Cl- and conductivity


Conductivity is readily measured in-situ using

multiprobes


A well documented approach used by USGS

Predicting Cl- from conductivity

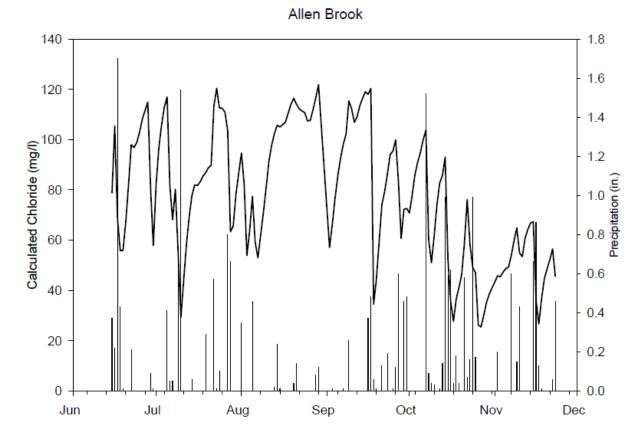

 Step 1 – pair Cl- measurements against conductivity

Figure 3. Specific Conductance (μ s/cm) vs. chloride (mg/l) for all streams minus Bartlett Brook (solid dots) and Bartlett Brook (open dots).

Predicting Cl- from conductivity

 Step 2 – estimate Cl- form conductivity using probe data

Management Approach

- We are unlikely to eliminate the use of de-icing salts, but they can be managed.
- VTrans is a leader in alternative de-icing technology, as are some municipalities.
- Municipalities are recognizing the need to manage application. Cost and environmental benefits still must be weighed against public safety
- Private application is where the greatest challenges lie.

Process/timeline for adoption

- Review of stakeholder outreach to date
- Rulemaking process review
- Proposal to ICAR
- Public process with hearing(s)
- Finalize proposal and responsiveness summary
- Proposal to LCAR
- Final filing with Sec. of State.